PDUAM, Tulungia Sessional Examination 2023 Subject: Science (Mathematics) Class: B.Sc. 1st Semester

Paper: Classical Algebra

Full Marks: 20

Time: 1 hour

 $1 \times 2 = 2$

5

1.	Find the values of i^{2023}	1
2.	Show that, In general $\arg(Z_1Z_2) \neq \arg(Z_1) + \arg(Z_2)$	2
3.	State and Prove De Moivre's theorem.	4
	(or)	
	Expand $\cos n\theta$, $\sin n\theta$, and $\tan n\theta$ when n is positive integer and θ is real.	
4. 5.	Find an upper limit of the real roots of the equation $x^4 - 2x^3 + 3x^2 - 2x + 2 = 0$. Apply Descartes' rule of signs to examine the nature of the roots of the equation	2
	$x^4 + 2x^2 + 3x - 1 = 0.$	2

- 6. Solve the equation $2x^3 x^2 18x + 9 = 0$ if two of the roots are equal in magnitude but opposite in sign. 2
- 7. Answer the following questions (any two)

Г. **Л**

i) If
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$, find AB.

ii) Construct a matrix A which is Hermitian but not symmetric.

iii) Determine x, y if

$$2\begin{pmatrix} x+2 & y+3 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ y & 0 \end{pmatrix}^{T}.$$

Find the matrix X such that X = AX + B, where $A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}$. 8.

OR

- 9. Find the inverse of the following matrix by Gauss-Jordan elimination method
 - $\mathbf{A} = \begin{bmatrix} 4 & -8 & 5 \\ 4 & -7 & 4 \\ 3 & -4 & 2 \end{bmatrix}.$
